
講義メモ
・p.114「配列の書き方を覚えよう」

提出フォロー：アレンジ演習：chap3_5_2f

・乱数で1から9を5回得て、５本の横棒グラフを表示しよう
例：
7:■■■■■■■
2:■■
6:■■■■■■
5:■■■■■
4:■■■■
ヒント：1から9の乱数を得るには
 System.Random r = new System.Random(); //乱数クラスのオブジェクトを生成(１度で
OK)
　：
 int n = r.Next(9) + 1; //1から9までのどれかになる

作成例

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class chap3_5_2f : MonoBehaviour {
 System.Random r = new System.Random(); //乱数クラスのオブジェクトを生成
 void Start() {
 for (int i = 0; i < 5; i++) { //5回繰返す
 int n = r.Next(9) + 1; //1から9までのどれかになる
 string s = n + ":"; //連結用の文字列を用意
 for (int j = 0; j < n; j++) { //n回繰り返す
 s += "■"; //文字列に■を連結
 } //内側のforブロック(繰返し内容)の終わり
 Debug.Log(s); //出来上がった文字列を表示
 } //外側のforブロック(繰返し内容)の終わり
 }
 void Update() {

 }
}

p.114 配列の書き方を覚えよう

・配列：同じ意味で同じ型のデータをまとめて扱える仕組みの一つで、添字（インデック
ス、指標）と呼ばれる番号を用いる軽量・検索が高速な仕掛け。
・生成書式： 型[] 配列名 = {値①, 値②, …};
・例： string[] name = {"リムル", "シュナ", "シオン"};
・配列を構成する変数を要素といい、配列名[添字]で扱う
・C#では添字は0スタートなので、配列名[0]が先頭要素になる
・配列は生成時の要素の数＝要素数を変更できない
・なお、末尾の要素は、配列名[要素数 - 1]になり、配列名[要素数]は存在しない
　※ プログラム中で配列名[要素数]や配列名[負の数]にアクセスすると実行時エラーで
異常終了する

p.115 chap3_6_1

using System.Collections;
using System.Collections.Generic;

using UnityEngine;

public class chap3_6_1 : MonoBehaviour {
 void Start() {
 string[] dirs = { "東", "西", "南", "北" };
 Debug.Log(dirs[1]); //配列dirsの要素[1]＝"西"を表示
 }
 void Update() {

 }
}

p.115 配列を作って利用する

・配列の添字は式や変数で与えることができる
・例：
　string[] name = {"リムル", "シュナ", "シオン"}; int i = 2; Debug.Log(name[i]);

アレンジ演習：p.115 chap3_6_1

・dirs[1]ではなく、int型パブリック変数pを用いて、dirs[p]を表示しよう
・パブリック変数pの値は0から3とする（負の数か4以上にして異常終了することも試そ
う）

作成例

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class chap3_6_1 : MonoBehaviour {
 public int p = 0;
 void Start() {
 string[] dirs = { "東", "西", "南", "北" };
 Debug.Log(dirs[p]); //配列dirsの要素[p]を表示
 }
 void Update() {

 }
}

参考：実行時エラーの対処

・実行時エラーは文法エラーではないので、Visual Studioのエディタでは発生がわから
ない
　※ 実行時エラーが起こることが明らかな場合はエラーや警告が表示されることもある
・実行時エラーの発生場所はUnity側に表示されるメッセージで確認できる
・書式：
　[発生時刻]発生したエラーを示す例外クラス名:メッセージ
　実行クラス名.メソッド名(…)(at Assets/ソースファイル名:行番号)
・例：
　[12:50:02]IndexOutOfRangeException: Index was outside the bounds of the array.
　chap3_6_1.Start () (at Assets/chap3_6_1.cs:9)

p.116 配列の要素を置き換える

・配列の要素は単独の変数と同様に扱える
・よって、値を代入することで、格納されていた値を置き換えることが可能

p.116 string.Joinメソッド

・書式： string.Join(区切り文字列, 配列名)
・C#が提供するメソッドで、配列の全要素を連結した結果の文字列を返す
・この時、区切りに指定した文字列を要素間に挿入してくれる

p.116 chap3_6_2

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class chap3_6_2 : MonoBehaviour {
 void Start() {
 string[] dirs = { "東", "西", "南", "北" };
 dirs[0] = "真東"; //配列dirsの要素[0]に代入（書き換え）
 Debug.Log(string.Join(" ", dirs)); //配列dirsの全要素を連結表示(空白区切
り)
 }
 void Update() {

 }
}

アレンジ演習：p.115 chap3_6_2

・int型パブリック変数pと、string型パブリック変数sを用いて、dirs[p]にsを代入しよ
う
　例： p ← 2、s ← 真南
・パブリック変数pの値は0から3とする

作成例

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class chap3_6_2 : MonoBehaviour {
 public int p = 0;
 public string s = "";
 void Start() {
 string[] dirs = { "東", "西", "南", "北" };
 dirs[p] = s; //配列dirsの要素[p]に文字列sを代入（書き換え）
 Debug.Log(string.Join(" ", dirs)); //配列dirsの全要素を連結表示(空白区切
り)
 }
 void Update() {

 }
}

p.117 要素を入れずに配列を作成する

・p.114の書式は「配列の初期化」と呼ばれるもので、初期値の数により要素数が決まる
・この書式では要素数が大きい配列には不向きなので、要素数だけを指定して、初期値を
与えずに空で生成する書式を用いる
・書式： 型[] 配列名 = new 型[要素数];

　※ これは「配列の宣言」である「型[] 配列名;」と「配列の生成」である「配列名 =
new 型[要素数];」を合わせたものなので、型を2回指定している。
・例： string[] name = new string[3]; //name[0]、name[1]、name[2]が生成される

p.117 new演算子

・newは「新しい」ではなく「生成せよ」のイメージで、メモリ上に領域を確保して利用
できるようにする処理に汎用的に用いる
・配列の生成においても「指定した型×要素数分の領域」を確保することを示している。

p.117 chap3_6_3

・このままでは実行しても何も表示されないので、chap3_6_2の9行目を、末尾に入れると
良い

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class chap3_6_3 : MonoBehaviour {
 void Start() {
 string[] dirs = new string[4]; //要素数4の空の配列を生成
 dirs[0] = "東"; //配列dirsの要素[0]に文字列を代入
 dirs[1] = "西"; //配列dirsの要素[0]に文字列を代入
 Debug.Log(string.Join(" ", dirs)); //配列dirsの全要素を連結表示(空白区切
り)
 }
 void Update() {

 }
}

ミニ演習：フィボナッチ数列 mini117

・フィボナッチ数列とは要素[n]の値が要素[n - 2]と要素[n - 1]の和になっているもの
で、各種の統計処理やシミュレーションに利用される
・要素数5のフィボナッチ数列を作成しよう。要素[0]と要素[1]の値は1とする
・配列の型はintで良い
・できた数列をカンマ区切りで連結表示しよう
・実行結果：1,1,2,3,5

作成例

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class mini117 : MonoBehaviour {
 void Start() {
 int[] fib = new int[5]; //要素数5のフィボナッチ数列を生成
 fib[0] = fib[1] = 1; //配列fibの要素[0]と要素[1]に1を代入
 fib[2] = fib[0] + fib[1]; //前２要素の和を代入
 fib[3] = fib[1] + fib[2]; //前２要素の和を代入
 fib[4] = fib[2] + fib[3]; //前２要素の和を代入
 Debug.Log(string.Join(",", fib)); //配列fibの全要素を連結表示(カンマ区切
り)
 }
 void Update() {

 }
}

p.118 foreach文

・配列などの複数のデータを持つ構造に用いる専用の繰返し文で「拡張for文」ともいう
・配列の場合の書式： foreach (型 作業変数名 in 配列名) { 繰返し内容 }
・作業変数名は自由で、その型としては通常は配列の型を指定する
　※ 作業変数の型は配列の型で決めることができるので、自動指定を意味する「var」に
もできる
・繰返し内容では、配列から１要素ずつが作業変数にコピーされて渡される
・よって、繰返し内容では、要素の代わりに作業変数を用いる。添字は用いない
・繰返し内容では作業変数への代入はできない（エラーになる）

p.118 chap3_7_1

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class chap3_7_1 : MonoBehaviour {
 void Start() {
 string[] dirs = { "東", "西", "南", "北" };
 foreach (string d in dirs) { //配列dirsの全要素について作業変数dを用いて
繰返す
 Debug.Log(d + "方向");
 }
 }
 void Update() {

 }
}

ミニ演習：フィボナッチ数列 mini117 続き

・出来上がった数列の要素値の合計をforeachで得て表示しよう

作成例

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class mini117 : MonoBehaviour {
 void Start() {
 int[] fib = new int[5]; //要素数5のフィボナッチ数列を生成
 fib[0] = fib[1] = 1; //配列fibの要素[0]と要素[1]に1を代入
 fib[2] = fib[0] + fib[1]; //前２要素の和を代入
 fib[3] = fib[1] + fib[2]; //前２要素の和を代入

 fib[4] = fib[2] + fib[3]; //前２要素の和を代入
 Debug.Log(string.Join(",", fib)); //配列fibの全要素を連結表示(カンマ区切
り)
 int sum = 0; //【以下追加】合計用
 foreach(var work in fib) { //数列の全要素について作業変数を用いて繰返す
 sum += work; //合計に足し込む
 }

 Debug.Log("計＝" + sum); //合計を表示
 }
 void Update() {

 }
}

p.119 for文を使ってインデックスを指定する

・foreachでは表現できない処理を行いたい場合や、繰返しの中で配列の要素値を変更し
たい場合などは、for文を用いると良い
・for文のカウンタ用の変数を添字として用いると、可読性が高くなる
・利用書式例： for(int i = 0; i < 要素数; i++) { 配列[i]の処理 }
・よって、foreachで表現できる処理はすべて上記の書式に置き換えることが可能
・また、繰返しの中で添字を用いたい場合も、for文で記述すると良い

p.119 chap3_7_2

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class chap3_7_2 : MonoBehaviour {
 void Start() {
 string[] dirs = { "東", "西", "南", "北" };
 for (int cnt = 0; cnt < 4; cnt++) { //要素数の分、変数cntを用いて繰返す
 Debug.Log(dirs[cnt] + "方向");
 }
 }
 void Update() {

 }
}

アレンジ演習：chap3_7_2

・添え字を付けて「0＝東方向」「1＝西方向」「2＝南方向」「3＝北方向」と表示しよう
・これはforeachでは難しいが、forでは簡単

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class chap3_7_2 : MonoBehaviour {
 void Start() {
 string[] dirs = { "東", "西", "南", "北" };
 for (int cnt = 0; cnt < 4; cnt++) { //要素数の分、変数cntを用いて繰返す
 Debug.Log(cnt + "＝" + dirs[cnt] + "方向"); //【変更】
 }
 }
 void Update() {

 }
}

補足：配列の要素数

・配列の要素数は、配列名.Lengthで得られる。よって、for文で扱うときには

　for(int i = 0; i < 配列名.Length; i++) { 配列[i]の処理 }
　としておけば、配列の要素数が変わっても、書き換える必要がなくなるので便利
※ 配列の要素数は、必ず配列名.Lengthで得ることというルールにしている場合もある

アレンジ演習：chap3_7_2

・配列の要素数を配列名.Lengthで得るようにしよう
・すると、配列の末尾に要素"中央"を加えても、処理の変更は不要になることを確認しよ
う

作成例

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class chap3_7_2 : MonoBehaviour {
 void Start() {
 string[] dirs = { "東", "西", "南", "北", "中央" };
 for (int cnt = 0; cnt < dirs.Length; cnt++) { //要素数の分、変数cntを用
いて繰返す
 Debug.Log(cnt + "＝" + dirs[cnt] + "方向");
 }
 }
 void Update() {

 }
}

ミニ演習：フィボナッチ数列 mini117 続き

・数列の要素数を10にして、要素[2]以降の値のセットをfor文による繰返しで行うように
しよう
・ヒント： for(int i = 2; i < fib.Length; i++) { fib[i] = fib[i - 2] + fib[i -
1]; }
・実行結果： 1,1,2,3,5,8,13,21,34,55
・合計は、そのままforeachで得ると良い

提出：ミニ演習：フィボナッチ数列 mini117 続き

次回予告：p.120 chap3_8_1（配列とforeachによる２重ループ）から

