
講義メモ
・「ジャンケン」その の補足をしてから、 「繰り返し文」に進みます3 p.098

提出：追加演習「ジャンケン」その3 janken3

・判定を表示しよう
・例「あなたの勝ち」「わたしの勝ち」「あいこ」
・ヒント：先に「あいこ」を判断すると楽。判定は で連結した条件ですると良いOR
※　 計算式で判定することもできる： ならば の勝ち (3 + hand - cpuh) % 3 == 2 hand

作成例１

using UnityEngine;
public class janken3 : MonoBehaviour {

手をどうぞ グー チョキ パー [Header(" (0= ,1= ,2=)")]
 public int hand;
 void Start() {

乱数クラスのオブジェクトを生成 System.Random r = new System.Random(); //
あなたの手＝ string s = " ";

グー チョキ パー Debug.Log(s + ((hand == 0) ? " " : (hand == 1) ? " " : "
"));

わたしの手＝ string c = " ";
乱数で を得る int cpuh = r.Next(3); // 0,1,2

グー チョキ パー Debug.Log(c + ((cpuh == 0) ? " " : (cpuh == 1) ? " " : "
"));
 if(hand == cpuh) {

あいこ Debug.Log(" ");
 } else if (hand == 0 && cpuh == 1 ||
 hand == 1 && cpuh == 2 ||

条件で判定 hand == 2 && cpuh == 0) { //
あなたの勝ち Debug.Log(" ");

 } else {
わたしの勝ち Debug.Log(" ");

 }
 }
 void Update() { }
}

作成例２

using UnityEngine;
public class janken3 : MonoBehaviour {

手をどうぞ グー チョキ パー [Header(" (0= ,1= ,2=)")]
 public int hand;
 void Start() {

乱数クラスのオブジェクトを生成 System.Random r = new System.Random(); //
あなたの手＝ string s = " ";

グー チョキ パー Debug.Log(s + ((hand == 0) ? " " : (hand == 1) ? " " : "
"));

わたしの手＝ string c = " ";
乱数で を得る int cpuh = r.Next(3); // 0,1,2

グー チョキ パー Debug.Log(c + ((cpuh == 0) ? " " : (cpuh == 1) ? " " : "
"));
 if(hand == cpuh) {

あいこ Debug.Log(" ");
式で判定 } else if ((3 + hand - cpuh) % 3 == 2) { //

あなたの勝ち Debug.Log(" ");
 } else {

わたしの勝ち Debug.Log(" ");
 }
 }
 void Update() { }
}

繰返し文Chapter 3

文p.100 while

・前判定の単純な繰返しに向く構文
・前判定：繰返しの１回目の前に条件をチェックすること。１度も繰り返さないことがある場合に便利
・書式： 継続条件 繰返し内容 while() { ;… }
・継続条件は 型 の値または式で、主に、比較演算子の式を用いるbool (p.56)
・例： が だったら 回繰り返す while(a < 3) { a = a + 1; } //a 0 3
・この例のように式が である間＝条件式が成立する間だけ繰返すというパターンが多いtrue
・例： が だったら 回繰り返す while(a > 0) { a = a - 1; } //a 3 3

p.101 chap3_2_1

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class chap3_2_1 : MonoBehaviour {
 void Start() {
 int shikin = 30000;

が 以上であれば繰返す while(shikin >= 0) { //shikin 0
 Debug.Log(shikin);

から を差し引く shikin = shikin - 5080; //shikin 5080
ブロック 繰返し内容 の終わり } //while ()

 }
 void Update() {

 }
}

計算もできる代入演算子p.103

・正式には複合代入演算子といい、左辺の変数を用いた式を代入の右辺に書く場合に、誤読しやす

いことから、誤読を防ぎ、かつ、冗長さを省く仕掛け
◆ ◆・ 演算子： 〇 〇 を 〇 と書ける。意味は「足し込む」+= = + +=

⇒　例： a = a + 5; a += 5;
◆ ◆・ 演算子： 〇 〇 を 〇 と書ける。意味は「差し引く」-= = - -=

⇒　例： a = a - 5; a -= 5;
・他に「 （ 倍する、掛けた積にする）」「 割った商にする 」「 割った余りにする 」などがある*= N /=() %=()

アレンジ演習：p.101 chap3_2_1①

・ 演算子で書き直そう-=

作成例

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class chap3_2_1 : MonoBehaviour {
 void Start() {
 int shikin = 30000;

が 以上であれば繰返す while(shikin >= 0) { //shikin 0
 Debug.Log(shikin);

【変更】 から を差し引く shikin -= 5080; // shikin 5080
ブロック 繰返し内容 の終わり } //while ()

 }
 void Update() {

 }
}

アレンジ演習：p.101 chap3_2_1②

・資金をパブリック変数で与えるようにしよう
・そして、資金が負の数の時には何も表示されないことも確認しよう

作成例

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class chap3_2_1 : MonoBehaviour {
【移動】 public int shikin = 30000; //

 void Start() {
が 以上であれば繰返す while(shikin >= 0) { //shikin 0

 Debug.Log(shikin);
から を差し引く shikin -= 5080; //shikin 5080

ブロック 繰返し内容 の終わり } //while ()
 }

 void Update() {

 }
}

アレンジ演習：p.101 chap3_2_1③

・ ブロックを抜けた後で、資金の額はどうなっているか確認しようwhile

作成例

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class chap3_2_1 : MonoBehaviour {
【移動】 public int shikin = 30000; //

 void Start() {
が 以上であれば繰返す while(shikin >= 0) { //shikin 0

 Debug.Log(shikin);
から を差し引く shikin -= 5080; //shikin 5080

ブロック 繰返し内容 の終わり } //while ()
繰返し後の資金 【追加】 Debug.Log(" = " + shikin); //

 }
 void Update() {

 }
}

アレンジ演習：p.101 chap3_2_1④

・ 文を加えて、資金が赤字 負の数 にならないようにしようif ()
・ヒント： 資金が 以上あれば差し引くようにすれば良い 5080
・しかし、こうすると、繰返しが終わらなくなるので、繰返し条件を「資金 」に変更しよう > 0
・そして、資金が 未満であれば資金を にすれば良い（あるだけ払うイメージ）5080 0

作成例

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class chap3_2_1 : MonoBehaviour {
 public int shikin = 30000;
 void Start() {

【変更】 がある間繰返す while(shikin > 0) { // shikin
 Debug.Log(shikin);

【追加】 が 以上ある？ if (shikin >= 5080) { // shikin 5080
から を差し引く shikin -= 5080; //shikin 5080

【追加】 が 未満？ } else { // shikin 5080
【追加】 を使い尽くす shikin = 0; // shikin

 }
ブロック 繰返し内容 の終わり } //while ()
繰返し後の資金 Debug.Log(" = " + shikin);

 }
 void Update() {

 }
}

ミニ演習 mini103

・ から までカウントダウンし、続けて までカウントアップしよう3 0 3
・ を続けて２回行えば良いwhile

作成例

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class mini103 : MonoBehaviour {
 void Start() {
 int i = 3;

超である間繰返す＝ になるまで while (i > 0) { //0 0
 Debug.Log(i);

を差し引く i = i - 1; //1
この繰返しを抜けた時点では は になっている } // i 0

以下ある間繰返す＝ になるまで while (i <= 3) { //3 4
 Debug.Log(i);

を足し込む i = i + 1; //1
 }
 }
 void Update() {

 }
}

補足：後判定繰返し文

・繰返し内容を１度行ってから繰返すかどうか判断する場合に用いる繰返し構文
・書式： 繰返し内容 継続条件 do { } while();
・例： 円で遊ぶ まだ金があるdo { 100 } while();
・主に、入力や受信などで得たものをチェックし、正しいものが得られるまで先に進まない場合に用いる
ことが多い
・例： 画面などから か を入力 でも でもない？do { y n } while(y n);
・例： データを受信 正しくない？do { } while();

ミニ演習 mini103b

・ を後判定繰返しにしてみようchap3_2_1
パブリック変数で を受け取る① int zandaka = 30000

円払う②5080
残高を表示する③
残高がある間、 を繰り返す④ ②③
※ 最初の残高が 円未満でも（赤字になっても）払うことになる 5080

作成例

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class mini103b : MonoBehaviour {
 public int zandaka = 30000;
 void Start() {
 do {

円払う たとえ赤字でも！ zandaka -= 5080; //5080 ()
 Debug.Log(zandaka);

残高がある間繰返す } while (zandaka > 0); //
 }
 void Update() {

 }
}

補足：２重繰返し

・ の図の通り「繰返しの中で繰返し」を行うことが可能p.099
・この場合、繰返しに関わる変数やカウンタの変数の変化に注意
例：２ ３回繰り返す場合× ①
int a = 2;
while (a > 0) {
　a -= 1;
　int b = 3;
　while (b > 0)
　　b -= 1;
　　ここに処理を書くと２ ３回繰返される×
　}
}
例：２ ３回繰り返す場合× ②
int a = 1;
while (a <= 2) {
　int b = 1;
　while (b <= 3)
　　ここに処理を書くと２ ３回繰返される×
　　b += 1;

　}
　a += 1;
}

ミニ演習 平面ダンジョンへのモンスターの配置作り mini099

・縦３ 横２の６部屋のダンジョンがある×
・乱数を用いて、 部屋に ～ 匹のモンスターを配置したい1 0 9
下記のように表示しよう
　 階 号室は 匹1 1 9
　 階 号室は 匹1 2 2
　 階 号室は 匹2 1 9
　 階 号室は 匹2 2 3
　 階 号室は 匹3 1 0
　 階 号室は 匹3 2 1

作成例

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class mini099 : MonoBehaviour {
 void Start() {

乱数クラスのオブジェクトを生成 System.Random r = new System.Random(); //
階から int a = 1; //1

階まで繰返す while (a <= 3) { //3
号室から int b = 1; //1

号室まで繰返す while (b <= 2) { //2
～ の乱数を得る int n = r.Next(10); //0 9

階 号室は 匹 Debug.Log(a + " " + b + " " + n + " ");
次の部屋へ b = b + 1; //

 }
次の階へ a = a + 1; //

 }
 }
 void Update() {

 }
}

ミニ演習 直列ダンジョンへのモンスターの配置作り mini099b

・６部屋のダンジョンがある
・乱数を用いて、 部屋に ～ 匹のモンスターを配置したい1 0 9
・モンスターの数を の数で示そう●
下記のように表示しよう
　 号室：1 ●●●●●●●●●
　 号室：2 ●●

　 号室：3 ●●●
　 号室：4
　 号室：5 ●●●●●
　 号室：6 ●●●●
・ヒント：内側の繰返しは の連結をモンスターの数だけ行う処理になる"●"

号室から①a=1
号室まで から を繰り返す②a=6 ③ ⑩

　 文字列 を 号室： にする③ s a + " "
　 モンスター数 を乱数 で決める④ n r
　 カウンタ を にする⑤ b 0
　 カウンタ がモンスター数 以下である間、 から を繰り返す⑥ b n ⑦ ⑧
　　 文字列 を にする（つまり後ろに を連結する）⑦ s s + "●" "●"
　　 カウンタ を にする つまり次のモンスターへ⑧ b b + 1 ()
　 文字列 を表示⑨ s
　 カウンタ を にする つまり次の部屋へ⑩ a a + 1 ()

作成例

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class mini099b : MonoBehaviour {
 void Start() {

乱数クラスのオブジェクトを生成 System.Random r = new System.Random(); //
号室から int a = 1; //1

号室まで繰返す while (a <= 6) { //6
号室： 「 号室：」を用意 string s = a + " "; // ■

モンスター数を ～ にする int n = r.Next(10); // 0 9
カウンタを にする int b = 0; // 0

カウンタがモンスター数未満の間 while (b < n) { //
文字列に を連結 s += "●"; // "●"
次のモンスターへ b = b + 1; //

 }
できた文字列を表示 Debug.Log(s); //

次の部屋へ a = a + 1; //
 }
 }
 void Update() {

 }
}

提出：アレンジ演習：直列ダンジョンへのモンスターの配置作り mini099b

・９匹満室の部屋には「満室」と表示しよう
例：
　 号室： 満室1 ●●●●●●●●●
　 号室：2 ●●

　 号室：3 ●●●
　 号室：4
　 号室： 満室5 ●●●●●●●●●
　 号室：6 ●●●●
ヒント：
・ する直前に「 が なら、 に 満室 を連結する」処理を挿入すれば良いDebug.Log n 9 s " "

次回予告： 「 文」からp.104 for

