
講義メモ
・ からp.57 Chap1_11_1

型を変換する.56

・範囲の大きい同種の型に代入する場合は、自動的に暗黙の型変換が行われる
　例： 暗黙の型変換で になる int i = 5; long a = i; // long
・整数型から実数型に代入する場合は、自動的に暗黙の型変換が行われる
　例： 暗黙の型変換で になる int i = 5; double a = i; // double
・実数を整数型に代入する場合は、明示的な型変換（キャスト）が必要で「 型名 」を前置する()
※　 これをキャスト演算子ともいう
　例： 型にキャストしてからなら代入可能で に double a = 3.14; int i = (int)a; //int 3
なる
・実数リテラルを整数型にキャストすることも可能
　例： 型にキャストしてからなら代入可能で になる int i = (int)3.14; //int 3
・実数から整数型にキャストすると小数点以下切捨てになる（四捨五入ではない）
・文字列型以外の各型を文字列型に変換するには、 文字の文字列 に「 」で連結すると良い""(0) +
　例： 文字列 になる int i = 365; string s = "" + i; // "365"

p.57 Chap1_11_1

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class Chap1_11_1 : MonoBehaviour {
 void Start() {

小数点以下切捨てで 変換 int seisuu = (int)3.5; // int
文字列変換で になる string text = "" + 110; // "110"

加算ではなく連結で になる Debug.Log(seisuu + text); // "3110"
 }
 void Update() {

 }
}

ミニ演習：mini057b

・３の整数の平均値を実数で表示したい
・ 変数 、 、 を定義し、合計を にキャストしてから で割って平均を得ようpublic a b c double 3

作成例

using UnityEngine;
public class mini057b : MonoBehaviour {
 public int a = 1, b = 2, c = 3;
 void Start() {
 Debug.Log((double)(a + b + c) / 3);
 }

 void Update() {}
}

別解

using UnityEngine;
public class mini057b : MonoBehaviour {
 public int a = 1, b = 2, c = 3;
 void Start() {

整数 実数になる Debug.Log((a + b + c) / 3.0); // ÷
 }
 void Update() {}
}

ミニ演習：mini057c

・西暦を受け取って何世紀か答えよう
・例： 世紀は 年から 年まで20 1901 2000
・入力時にわかりやすいように 側のパブリック変数の上にコメントを表示できるUnity

※・書式： コメント パブリック変数の定義のすぐ上に単独行で置くこと [Header(" ")]
・ヒント： 世紀 年 = (- 1) / 100 + 1

作成例

using UnityEngine;
public class mini057c : MonoBehaviour {

西暦を入力してください [Header(" ")]
 public int a = 1901;
 void Start() {

世紀です 計算後に連結 Debug.Log((a - 1) / 100 + 1 + " "); //
 }
 void Update() {}
}

参考：２つ以上のパブリック変数コメントも可能

using UnityEngine;
public class mini057c : MonoBehaviour {

西暦を入力してください [Header(" ")]
 public int a = 1901;

令和の和暦を入力してください [Header(" ")]
 public int b = 1;
 void Start() {

世紀です 計算後に連結 Debug.Log((a - 1) / 100 + 1 + " "); //
西暦 年です 計算後に連結 Debug.Log(" " + (b + 2018) + " "); //

 }
 void Update() {}
}

引数と戻り値p.58

・ はメソッドと呼ばれる処理を示す構文の一つDebug.Log
・ 言語などでは関数と呼んでいたが、 などのオブジェクト指向言語ではメソッドといいクラスのC C#/Java
中におく
・メソッドは「０個以上の情報を受け取って何かを行い０または１個の情報を返す」仕組み
・ の場合、１個の情報を受け取って何かを行い０個の情報を返す（何も返さない）Debug.Log
・この情報を受け取る仕組みを引数といい、メソッド名の後にカッコで示す
・引数のないメソッドもある
・１個の情報を返すメソッドでは、何型で返すのかを決める必要がある。これを戻り値型という
※ の「 」は メソッドが所属するクラス名（ が提供） Debug.Log Debug Log Unity
・平方根を返す メソッドがあり、戻り値型は 、引数は１個で 型Mathf.Sqrt float float
　https://docs.unity3d.com/ja/2021.2/ScriptReference/Mathf.Sqrt.html
・このことを「戻り値型 メソッド名 引数型 」とも表現する 例： (,…) float Mathf.Sqrt(float)
・なお、引数型が実数 や の場合、整数を指定すると自動的に変換される(float double)
　例： は とみなされて が返される Mathf.Sqrt(16) Mathf.Sqrt(16.0) 4.0
・数式にはメソッドの呼び出しを含むことができる
　例： になる float f = Mathf.Sqrt(16.0) + 1.0; //5.0
・引数でメソッドの呼び出しを含むことができる
　例： を表示 Debug.Log(Mathf.Sqrt(16.0)); //4
※ の「 」は メソッドが所属するクラス名で が提供 Mathf.Sqrt Mathf Sqrt Unity
※ なお、 が提供するクラスを利用するために「 」を指定している Unity using UnityEngine;

ミニ演習 mini059

・ 型のパブリック変数で実数を受け取って、平方根を表示しようfloat

作成例

using UnityEngine;
public class mini059 : MonoBehaviour {

実数を入力してください [Header(" ")]
 public float a = 0;
 void Start() {

平方根は メソッドを呼んで連結 Debug.Log(" " + Mathf.Sqrt(a)); //
 }
 void Update() {}
}

複数の引数を渡すp.59

・メソッドに渡すことのできる引数の型、数、順序は定義で決まっており、定義されていない引数の指
定を行うとエラーになる
※ や が提供するメソッドの引数の型、数、順序はオフィシャルドキュメントで確認できる C# Unity
※ 同じ名前で引数の型、数、順序が異なるものを複数定義できる（オーバーロードという）
※ メソッドは引数をいくつでも指定できる特別なメソッドになっている（可変引数） Mathf.Max
・複数の引数を指定できる場合はカンマ区切りで並べると良い
・ の戻り値型は 、引数型はすべて だが、整数値を指定でき、戻り値をMathf.Max float float int
型変数に代入できる

※ カンマ区切りにおいてはカンマの後ろに空白を置くというチームルールにしていることがある

p.59 Chap1_12_1

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class Chap1_12_1 : MonoBehaviour {
 void Start() {

最大値を得る int value = Mathf.Max(10, 40, 20, 30); //
 Debug.Log(value);
 }
 void Update() {

 }
}

アレンジ演習：p.59 Chap1_12_1

・３つの 型実数をパブリック変数で受け取って最大値を表示するようにしようfloat

作成例

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class Chap1_12_1 : MonoBehaviour {
 public float a, b, c;
 void Start() {

最大値を得る float value = Mathf.Max(a, b, c); //
 Debug.Log(value);
 }
 void Update() {

 }
}

メソッドの「 」の前にあるものは何？p.060 .

・前述のとおり、 の「 」は メソッドが所属するクラス名で、これは が提供すDebug.Log Debug Log Unity
るクラス
・前述のとおり、 や、 の「 」は メソッドが所属するクラス名で、これもMathf.Sqrt Mathf.Max Mathf Max

が提供するクラスUnity
・メソッドは（ 言語などの関数とは異なり）クラスに所属するC
・なお、 や もメソッドで、所属するクラス名が ならば、フル名はStart() Update() Chap1_12_1

や となる。Chap1_12_1.Start() Chap1_12_1.Update()
※ よって、実質的には システムがクラス名 を呼び出してくれている Unity .Start()

※ なお、クラスが異なれば同名のメソッドを持つことができるので便利＆注意

静的メソッドとインスタンスメソッドp.061

・クラスは多数のメソッドを持つ部品箱的なものもあるが、基本的にはメソッドとデータを持つ設計図の
イメージでもある。
・汎用的に使われるメソッドは、部品箱的なクラスにおいて「クラス名 メソッド名」で呼び出せるように.
静的メソッドとして定義する。
・ メソッド、 メソッド、 メソッドはすべて静的メソッドDebug.Log Mathf.Sqrt Mathf.Max
※ 静的メソッドは定義において「 」をつけて区別する static
・対して、メソッドとデータを持つ設計図のイメージになっているクラスでは、メソッドとデータをオブジェクト
としてまとめて扱いたいので「オブジェクト名 メソッド名」で呼び出す。.
・このようなメソッドをインスタンスメソッドといい、こちらが標準的存在
※ 参考：インスタンスメソッドの例 の クラス (C# ArrayList)
　 モンスターを格納するリストを生成ArrayList monsters = new ArrayList(); //
　 ヴェルドラ リストに メソッドで追加monsters.Add(" "); //monsters Add
　 リムル リストに メソッドで追加monsters.Add(" "); //monsters Add
　 プレイヤーを格納するリストを生成ArrayList players = new ArrayList(); //
　 私 リストに メソッドで追加players.Add(" "); //players Add
※ 上記のように本来のメソッドは「何に」をつけて示すもので、静的メソッドは例外的。
※ クラスはプログラマが定義でき、中にメソッドを記述するときに、インスタンスメソッドにするか、静的メ
ソッドにするか判断できる

提出：アレンジ演習：p.59 Chap1_12_1

次回予告： 「エラーメッセージを読み解こう」からp.62

